print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
28/07/2013 (Added to site)
Author(s): Marrero, B.; Heller, R.

The use of an in vitro 3D melanoma model to predict in vivo plasmid transfection using electroporation

Journal: Biomaterials, 33 (2012), pp. 3036-3046
DOI:
Request reprint  |  Tell your friend  | 

Abstract: A large-scale in vitro 3D tumor model was generated to evaluate gene delivery procedures in vivo. This 3D tumor model consists of a “tissue-like” spheroid that provides a micro-environment supportive of melanoma proliferation, allowing cells to behave similarly to cells in vivo. This functional spheroid measures approximately 1 cm in diameter and can be used to effectively evaluate plasmid transfection when testing various electroporation (EP) electrode applicators. In this study, we identified EP conditions that efficiently transfect green fluorescent protein (GFP) and interleukin 15 (IL-15) plasmids into tumor cells residing in the 3D construct. We found that plasmids delivered using a 6-plate electrode applying 6 pulses with nominal electric field strength of 500 V/cm and pulse-length of 20 ms produced significant increase of GFP (7.3-fold) and IL-15 (3.0efold) expression compared to controls. This in vitro 3D model demonstrates the predictability of cellular response toward delivery techniques, limits the numbers of animals employed for transfection studies, and may facilitate future developments of clinical trials for cancer therapies in vivo.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: