print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
06/12/2013 (Added to site)
Author(s): Neal, R. E. 2nd; Smith, R. L.; Kavnoudias, H.; Rosenfeldt, F.; Ou, R.; McLean, C. A.; Davalos, R. V.; Thomson, K. R.

The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

Journal: Cardiovascular and Interventional Radiology, 36/6 (2013), pp. 1638-1645
DOI: 10.1007/s00270-013-0704-1
Request reprint  |  Tell your friend  | 

Abstract:

Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments.

Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions.

Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins.

Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: