print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
22/02/2016 (Added to site)
Author(s): Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P.

Pulsed Electric Field Pretreatment of Switchgrass and Wood Chip Species for Biofuel Production

Journal: Industrial & Engineering Chemistry Research, 50/1 (2011), pp. 10996–11001
DOI: 10.1021/ie200555u
Request reprint  |  Tell your friend  | 

Abstract: In biomass-to-fuel conversion, the biomass needs to be pretreated so that the cellulose in the plant fibers is exposed for conversion of the lignocellulosic biomass to fuels and chemicals. In this study, we report on the design and fabrication of a pulsed electric field (PEF) system for pretreatment of wood chip and switchgrass samples. Wood chip samples were given 1000 and 2000 pulses of 1 kV/cm, and 1000, 2000, and 5000 pulses of 10 kV/cm with a pulse width of 100 μs and frequency of 3 Hz. Switchgrass samples were given 1000, 2000, and 5000 pulses of 2.5, 5, 8, and 10 kV/cm with a pulse width of 100 μs and frequency of 3 Hz. The uptake of a colored dye neutral red C15H17ClN4 (MW ∼ 289) in untreated and PEF treated samples was studied to quantify the effect of PEF treatment on diffusion in plant tissues. Wood chip samples treated at 1 kV/cm showed a dye uptake similar to that of untreated wood chip samples. The switchgrass samples were resistant to change in the structure at low field strengths up to 5 kV/cm. The samples treated at field strengths of g8 kV/cm showed faster and larger neutral red uptake, suggesting an increase in the porosity of switchgrass samples. Similar phenomena were observed for wood chip samples treated at 10 kV/cm. Permeabilization of switchgrass and wood chip species using PEF can be utilized to improve cellulose hydrolysis to sugar and hence efficient fuel conversion.


Keywords: biofuel    pulsed electric field    switchgrass    wood chip   

Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: