print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
11/11/2013 (Added to site)
Author(s): Ellis, T. L.; Garcia, P. A.; Rossmeisl, J. H.; Henao-Guerrero, N.; Robertson, J.; Davalos, R. V.

Nonthermal irreversible electroporation for intracranial surgical applications

Journal: Journal of Neurosurgery, 114/3 (2011), pp. 681–688
DOI: 10.3171/2010.5.JNS091448
Tell your friend  | 

Abstract:

Object Nonthermal irreversible electroporation (NTIRE) is a novel, minimally invasive technique to treat cancer, which is unique because of its nonthermal mechanism of tumor ablation. This paper evaluates the safety of an NTIRE procedure to lesion normal canine brain tissue.

Methods The NTIRE procedure involved placing electrodes into a targeted area of brain in 3 dogs and delivering a series of short and intense electric pulses. The voltages of the pulses applied were varied between dogs. Another dog was used as a sham control. One additional dog was treated at an extreme voltage to determine the upper safety limits of the procedure. Ultrasonography was used at the time of the procedure to determine if the lesions could be visualized intraoperatively. The volumes of ablated tissue were then estimated on postprocedure MR imaging. Histological brain sections were then analyzed to evaluate the lesions produced.

Results The animals tolerated the procedure with no apparent complications except for the animal that was treated at the upper voltage limit. The lesion volume appeared to decrease with decreasing voltage of applied pulses. Histological examination revealed cell death within the treated volume with a submillimeter transition zone between necrotic and normal brain.

Conclusions The authors' results reveal that NTIRE at selected voltages can be safely administered in normal canine brain and that the volume of ablated tissue correlates with the voltage of the applied pulses. This preliminary study is the first step toward using NTIRE as a brain cancer treatment.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: