print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
11/03/2014 (Added to site)
Author(s): Morshed, B. I.; Shams, M.; Mussivand, T.

Investigation of Low-Voltage Pulse Parameters on Electroporation and Electrical Lysis Using a Microfluidic Device With Interdigitated Electrodes

Journal: IEEE Transactions on Biomedical Engineering, 61/3 (2014), pp. 871-882
DOI: 10.1109/TBME.2013.2291794
Request reprint  |  Tell your friend  | 

Abstract: Electroporation (EP) of biological cells leads to the exchange of materials through the permeabilized cell membrane, while electrical lysis (EL) irreversibly disrupts the cell membrane. We report a microfluidic device to study these two phenomena with low-voltage excitation for lab-on-a-chip (LOC) applications. For systematic study of EP, we have employed a quantification metric: flow Index (FI) of EP. Simulation and experimental results with the microfluidic device containing interdigitated, coplanar, integrated electrodes to electroporate, and rapidly lyse biological cells are presented. H&E stained human buccal cells were subjected to various pulse magnitudes, pulsewidths, and number of pulses. Simulations show that an electric field of 25 kV/cm with a 20 V applied potential produced 1.3°C temperature rise for a 5 s of excitation. For a 20 V pulse-excitation with pulse-widths between 0.5 to 5 s, EL was observed, whereas for lower excitations, only EP was observed. FI of EP is found to be a direct function of pulse magnitudes, pulsewidths, and numbers of pulses. To release DNA from nucleus, excitation-pulses of 5 s were required. Quantification of EP would be useful for systematic study of EP toward optimization with various excitation pulses, while low-voltage requirement and high yield of EP and EL are critical to develop LOC for drug delivery and cell-sample preparation, respectively.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: