print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
02/09/2013 (Added to site)
Author(s): Retelj, L.; Pucihar, G.; Miklavčič, D.

Electroporation of Intracellular Liposomes Using Nanosecond Electric Pulses—A Theoretical Study

Journal: IEEE Transactions on Biomedical Engineering, 60/9 (2013), pp. 2624-2635
DOI: 10.1109/TBME.2013.2262177
Request reprint  |  Tell your friend  | 

Abstract: Nanosecond (ns) electric pulses of sufficient amplitude can provoke electroporation of intracellular organelles. This paper investigates whether such pulses could provide a method for controlled intracellular release of a content of small internalized artificial lipid vesicles (liposomes). To estimate the pulse parameters needed to selectively electroporate liposomes while keeping the plasma and nuclear membranes intact, we constructed a numerical model of a biological cell containing a nucleus and liposomes of different sizes (with radii from 50 to 500 nm), which were placed in various sites in the cytoplasm. Our results show that under physiological conditions selective electroporation is only possible for the largest liposomes and when using very short pulses (few ns). By increasing the liposome interior conductivity and/or decreasing the cytoplasmic conductivity, selective electroporation of even smaller liposomes could be achieved. The location of the liposomes inside the cell does not play a significant role, meaning that liposomes of similar size could all be electroporated simultaneously. Our results indicate the possibility of using ns pulse treatment for liposomal drug release.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: