print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
20/02/2015 (Added to site)
Author(s): Polak, A.; Velikonja, A.; Kramar, P.; Tarek, M.; Miklavčič, D.

Electroporation Threshold of POPC Lipid Bilayers with Incorporated Polyoxyethylene Glycol (C12E8)

Journal: Journal of Physical Chemistry B, 119/1 (2015), pp. 192–200
DOI: 10.1021/jp509789m
Request reprint  |  Tell your friend  | 

Abstract: Electroporation relates to a phenomenon in which cell membranes are permeabilized after being exposed to high electric fields. On the molecular level, the mechanism is not yet fully elucidated, although a considerable body of experiments and molecular dynamic (MD) simulations were performed on model membranes. Here we present the results of a combined theoretical and experimental investigation of electroporation of palmitoy-oleoylphosphatidylcholine (POPC) bilayers with incorporated polyoxyethylene glycol (C12E8) surfactants. The experimental results show a slight increase of the capacitance and a 22% decrease of the voltage breakdown upon addition of C12E8 to pure POPC bilayers. These results were qualitatively confirmed by the MD simulations. They later revealed that the polyoxyethylene glycol molecules play a major role in the formation of hydrophilic pores in the bilayers above the electroporation threshold. The headgroup moieties of the latter are indeed embedded in the interior of the bilayer, which favors formation of water wires that protrude into its hydrophobic core. When the water wires extend across the whole bilayer, they form channels stabilized by the C12E8 head groups. These hydrophilic channels can transport ions across the membrane without the need of major lipid head-group rearrangements.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: