print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
09/11/2012 (Added to site)
Author(s): Cemazar, J.; Kotnik, T.

Dielectrophoretic field-flow fractionation of electroporated cells

Journal: Electrophoresis, 33/18 (2012), pp. 2867-2874
DOI: 10.1002/elps.201200265
Request reprint  |  Tell your friend  | 

Abstract:

We describe the development and testing of a setup that allows for DEP field-flow fractionation (DEP-FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP-FFF separation of moderately heat-treated CHO cells (50 degrees C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP-FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency.

 



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: