print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
28/01/2016 (Added to site)
Author(s): Henri, P.; Ospital, R.; Teissié, J.

Content Delivery of Lipidic Nanovesicles in Electropermeabilized Cells

Journal: Journal of Membrane Biology, 248/5 (2015), pp. 849-855
DOI: 10.1007/s00232-015-9789-6
Request reprint  |  Tell your friend  | 

Abstract: Lipidic nanovesicles (the so-called liposomes) were among the one of the earliest forms of nanovectors. One of their limits was our lack of knowledge on the delivery pathway of their content to the target cell cytoplasm. In most models, it appears to be linked to endocytotic transfer. Their direct content delivery can be enhanced by electric field pulses applied to a cell liposomes mixture. The optimal form for liposomes was shown to be large unilamellar vesicles (LUV). The present communication describes an optimization to enhance the delivery. When lipidic nanovesicles (LUVs) are electrostatically brought in contact with electropermeabilized cells by a salt bridge, their content is delivered into the cytoplasm of electropermeabilized cells. The PEF parameters are selected to affect specifically the cells leaving the vesicles unaffected. Cell viability is positively affected by the treatment. High-field short pulses are more efficient than low-field long pulses. A homogeneous cytoplasm labeling is observed under digitized videomicroscopy. The process is a content mixing, not an endocytotic pathway. The lipidic composition of the LUV should contain charged lipids (phosphatidylserine), fusion promoting lipids (phosphatidylethanolamine), and cholesterol



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: